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OF LOW-ASPECT-RATIO RECTANGULAR WINGS

By John M. Hedgepeth and Paul G. Warier,Jr.

sIJMmiRY

Slender-body theory is used in conjunction with plate theory to
s.nalyzethe static aeroelastic-divergencebehavior of low-aspect-ratio
rectangular wings of constant thickness when chordwise deformations me
considered. In the analysis, the spsnwise variation of the deflection
is restricted to a psrabola but the chordwise variation is allowed com-
plete freedom. Results show the variation of the divergence speed and
mode shape with the aspect ratio. Comparisons are made with results
obtained by using approximate (linear, parabolic, and cubic) chordwise
deflection shapes.

INTRODUCTION

.

Methods for predicting the divergence speed of wings when chordwise
deformations sre neglected have been treated extensively in the past..
For wings with fairly large aspect ratios, accurate results have been
obtained; however, for wings with low aspect ratios, the chordwise defor-
mations can no longer be neglected.

A number of analyses are available that deal with the effects of
chordwise deformation on divergence.
(ref. 1) and Biot (ref. 2).

Among them are the works of Miles
Miles considered the chordwise divergence

of a delta wing c=tilevered along its trailing edge. He assumed that
the deformations of the wing were cylindrical with straight-line gener-
ators in the spsmwise direction. Biot, on the other hand, considered an
unswept wing and included both spsnwise and chordwise structural effects.
In Biot’s work, the use of aerodynamic strip theory limits the value of
his analysis for low-aspect-ratio wings.

In the present paper an analysis is made of the divergence of
very low-aspect-ratio csm.tileverplates of uniform thickness (see fig. 1).
Allowance has been made for the presence of additional.discrete chordwise

. stiffening elements. Although the analysis includes both spanwise and
chordwise structural effects, primary emphasis is placed on the chordwise

.
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deformations. Indeed, the primary purposes of this study are to deter-
iilinethe types of chordwise deflection shapes which can be expected in
very low-aspect-ratiowings and to assess the accuracy resulting from

..

the use of approximate chordwise mode shapes in aeroelastic anslyses.

Slender-body theory (see ref. 3, for exsmple) is used to determine
the aerodynamic loads, and plate theory is used in conjunctionwith a
potential-energy approach to determine the deformations. Numerical
results axe presented for wings with various aspect ratios and chordwise
stiffnesses.

SYMBOLS

A

q} az) a3

c

D

E

(EI)e

(EI)i

f(x), f(g)

N

PI(X)

p(x,y)

q

R

s

aspect ratio

coefficients defined by equations (17)

wing chord

plate stiffness

Young’s modulus

total effective

/ ( -L@in bending, Et3 12 1

of elasticity

bending stiffness of chordwise stiffeners
(Seeeq. (19).)

bending stiffness of ith stiffener

chordwise deflection shape

total number of chordwise stiffeners

generalized aerodynamic loading (See eq. (13).)

lift per unit area, positive in z-direction

puz
dynsmic pressure, ~

coefficient defined by eqwtion (18)

wing semispan
.

.
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wing thickness

f ree-stresn

generalized

velocity

aerodynamic leading-edge shear (See eq. (13).)

leading-edge shesr

wing deflection, positive in z-direction

coordinate

parameters

system (See fig. 1.)

defined by eqpations (20) and (23)

divergence-speed

Poisson’s ratio

51’CqB3——
‘=aeter’ k8 D

nondimensional coordinates x/s, y/s, respectively

totsl potential energy of the system

dummy vsriable of integration for y

free-stream density of fluid

perturbation velocity potential

integer denoting stiffener number (See fig. 1.)

ANALYSIS

The wing configuration considered herein consists of a rectangular
plate of constant thickness with a number of constant-stiff~ss beams
in the chordwise direction (fig. 1). The wing is assumed to be supported
along its center line and only sy?mnetricaldeflections sre considered.

The analysis is based on the assumption that the aspect ratio of
the wing is very low. For such awing, the deflections will generally
vsry in a much more complicated msmner in the chordwise (x) direction
thsm in the spanwise (y) direction. It therefore seems reasonable to
assume a simple spsnwise vsriation for deflection snd &lJ_owthe chordwise
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variation to be arbitrary.
mation compatiblewith the
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.

Since the simplest type of spsnwise defor-
support boundary conditions is a parabola,

the following aasumed deflection shape is used in the analysis: - .

W(x,y) = y%(x) (1)

where f(x) is the chordwise deflection shape.

The assumption of low aspect ratio slso implies that Jones’ slender
body theory (ref. 3), in which stresmwise perturbations are considered
negligible in comparisonwith perturbations in the crossf~ directions,
can be used to determine the aerodynamic loading caused by the deforma-
tion of equation (l). Although slender-bodytl@ory is exact only in the

limit (1 - M2)A2 +0, it is employed herein because of its ease of
application; the use of slender-body theory leads to a particuI-sxIYsim-
ple formulation of the divergence problem snd, hence, aUows a detailed
investigation of the divergence behavior of very low-aspect-ratiowings.

In order to determine the deformations resulting from aerodynamic
loads, plate theory is employed. The principle of minimum potentiaJ-
energy is used to derive the differential equation of equilibrium for
the function f(x). In applying this principle, the difficulties arising
from the presence of nonconsenative forces are circumvented by treating
the loads as fixed quantities during the variation. The aerodynamic load~
are then substituted into the differential eqmtion and the solution is *
obtained.

●

Aerodynamic Forces

For slender-body theory, the velocity-potentialequation for line-
arized flow reduces to Laplace’s equation in the crossflow plane:

The boundary conditions are

(2)

~ (X,Y,O)
az

on the wing and @ = O at the tips.
potential at infinity must be zero.

= Uya ~ (3)
dx

Furthermore, derivatives of the
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.

It is desired to calculate
distribution resulting from the

.

5

the potential @ and hence the pressure
given deformation shape.

In order for equation (2) to be satisfied, with the boundary con-
dition that @ = O at the tips, the following relationship between

~ (% Y,+O) (the limit of ~/& as z approaches zero from above)
*

aud ‘$~ (x,y,O) must exist (ref. 4):

x (X,y, o) from equation (3) and integrating gives
‘ubstitutiW az

@(x,y,+o) = -; ()f’(x) <+y2~n

(4)

(5)

where the prime denotes differentiation with respect to x.

● The lift
potential is

.

per unit area of a thin wing in terms of the velocity

p(x,y) = @u ?&&Q

Thus, the lift per unit area is, by substitution from equation (5),

(~ ‘)P== (6)P(X,Y) =-~ qf’’(x)2 +Y

In addition to the distributed pressures acting on the wing, there
is a concentrated load acting slong the’leading edge. This concentrated
losd arises as a result of the application of the slender-body theory to
the rectangular plan form; that is, the velocity potential is zero shead
of the leading edge and then jumps to a finite value at the leading edge.
The magnitude of the resulting concentrated load is

v(y) = 2pu@(o,y,+o)
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which gives, by use of equation (5),

v(y) =-; W(o)(.g+ y,)~n

Structural Equilibrium

NACA TN 3958

(7)

The total potential energy of the
sists of the strain energy of the wing
aerodynamic f’orces. The strain energy
strain energy of the plate (ref. 5)

system under consideration con-
plus the potential energy of the
of the wing is made up of the

-1

and the energy of bending of the chordwise stiffeners (N in number)

*’f (E1,iJ’yk#-’]2m
i=1

In

is

these expressions, D is the plate stiffness (~3/12(1-P2)), (EI)i
the bending stiffness of the ith stiffener, and yi “Isthe spsmwise

coordinate of the ith stiffener. (Note that because of symmetry, only
haU of the wing is considered.)

The foregoing analysis of the aerodynamic forces has indicated that
the wing loads are composed of two parts, a distributed lift p(x,y)
snd a concentrated load V(y) located at the leading edge. The poten-
tial energy of the lift per unit area is

- /’c rs P(X,Y)W(X,Y)dY dx
Jo Jo

and the potential energy of the concentrated

-f

s
v(Y)w(o,Y)dY

o

load is
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The total potentisl energy of the system is the sum of these different
. energies, or

J
s

V(y)w(o,y)dy (8)
o

Substitution of the expression for W(X,Y) given by eqmtion (1)
into equation (8) results in the following expression for the total
potential.energy:

“=2Lc[p+*~(’1)iyjf’’’ sfs+*~@~”’” +

I

J
L3(1- ~)f” &- Oc
3

Pl(x)f d’ - Vlf(o)

where

!
s

PI(X) = P(X,Y)Y%
‘0 1

J’
s

VI = V(y)y’dy
o

(9)

(lo)

J
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Minimization of the potential-energy expression by means of the
cslculus of variations gives

tm=o

=:~{[’+i~ ‘E’’iyi]’f’’’s’+$s’’’ s’.”’’f’” +

!%(1 - ~)5f

I

f

c!

3
‘2dx - Pl(x)5f dx - v~bf(o)

o

Integrating by parts and coUecting terms results in the differential
equation

[$*2E1)iyi!fm+(12s3f’’+4sf+‘u) ,
and the following boundary conditions: .

At both X =Osmdx=c,

Atx=O,

[++’$E1)iyi!f’’’--:30

(12a)

(12b)
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9

.

At X=C,

~+*~(EI)iyijf:H-(8-:~)s3f=o(12C)

Aeroelastic Solution

The differential eqmtion and boundary conditions which describe
the deflection of the structure due to the generalized aerodynamic loads
PI(x) and VI are given by equations (U.) smd (12). The values of the

generalized loads canbe obtainedby substituting p(x,y) end V(y)
(eqs. (6) and (7)) into equations (10). This substitution gives

PI(X) =-+ s6qf’’(x)1
VI =-*s%f’(o)

J

(13)

If these values of Pi(x) and VI sre substituted into the differential
?

equation (U) and the four boundary conditions (eqs. (12)), and the eqw-
tions are nondimensionalized by letting

.

and

Y,
7,=7

the differential eqpation becomes
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The four boundary conditions become:

At ~ =0 or~,

1

f“(g) +~f(o =0

f“’(~) -$a3f’(E)=o

At !=0,

f“’(g)+
[*F-al) -#f’(’) ‘0 ‘

A

where

and

5(EI)e
R=l+—

SD

(15)

(16) ~

.

(17)

(18) .
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.

In equation (18j, (EI)e is
. the chordwise stiffeners and

U

the totsl effective bending stiffness of

is defined’as

N

(EI)e =
z

(EI)iqi4

i=l

The characteristic roots of the differential equation are

(19)

*@/-p - ..) * I/m
The roots canbe seen to be dependent on the value of (A - al). For

(A - al) (
2 > ~, all the roots sre imaginsry; for ~ - al

)
2 < ~, there

are two pairs of conjugate complex roots.
(

Consider first A - al
)
*>p.

For this case, the characteristic roots of the differential equation can
be written

~i(m~ ~)a

. where

(20)

The solution to the differential eqution is then

f(~) = c1 COS(CX+ P)E + C2 sin(a+ P)E +

C3 cos(a - p)~ +C4 sin(a- P)g (a)
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The value of f(~) is now substituted into the boundary conditions
given by equations (15); this substitutionyields a set of homogeneous ●

equations in the constants % C2) C3, and C4. The existence of a

nontrivial solution requires that the determinant of the coefficients
be equal to zero, or

bl

bl COS(ct+ f!):

o

.b5 sin(a+ B):

where

o b2 o

bl sin(a+ p): b2 COS(CL - P)~ bz s~(cL- P)~

= o

b3 o b4

b5 COS(CL+ fl)~ -b6 SiI’I(ct- ~)~ b6 COS(ct- P):

~-(cG+j3)2%==

b2. ; - (CL- B)2

[
( %)]b4=(d(a-P)2+;-#A-

b5 = -(a + P)
[ 1#a3+(a+~)2

[ 1b~=-(a- B)#a3+(a-p)2

Af”terthe determinant has been expanded and simplified, the following
equation is obtained: a

sin2~ ~
(

2A

()[

& )(-aI i-All -al+% )=

1

(22) -
sin% ~ a (-~ + al + A3)(~ - al - ‘4)



NACA TN 3958

.

13

where
.

Eqpation (22) is vslid only when A - al
( )

22=
. For vslues of

(~-.J2<~, the quantity ~ becomes imaginary. The corresponding
divergence equation-can be obtained directly from eqpation (22) by

4 replacing j3 by i~ where

.
(23). ..

The result is

Eqyation (22) (or (24)) gives an implicit relatiotihip between the
aerodynamic parsmeter A and the structural parameters (EI)e/SD, W,

end C/S. If (EI)e/sD .nd w ere fixed, then the values of’ An sre
known and the vsriation of A with c/s can be computed by a trisL-
and-error process. Since c/s appears in eqmtion (22) (or (24)) more

* simply than h, this computation csn be accomplished most easily by
choosing values of A and solving for the corresponding vslues of c/s,
where they exist.

G
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Approximate Solution

.

In the aeroelastic anslysis of low-aspect-ratiowings of practical. ●

construction, a closed-form solution such as that described in the pre-
ceding section would not be feasible; some sort of further approximation
would be necessary. One type of approximate procedure is to restrict
the allowable chordwise deflection shape to a polynomial of finite degree.
The present configuration (fig. 1) furnishes an excellent test for the
accuracy of this procedure.

The consequences of assuming linear chordwise deflections can be

()

(EI)e
obtained by aUowing the chordwise stiffeners to be rigid — = @ .

SD

In order to obtain results for higher degrees, it is necessary to start
with the energy expression (eq. (9)). Letting

then minimizing the potential energy with respect to dl> d2) dz . . .,

and finsll.ysubstituting the

from equations (13) yields a
For the cubic approximation,

appropriate expressions for PI and V1

set of homogeneous simultaneous equations.
the equations are:

5

5/2

B2

(c/s)2

Bcj

(c/sj3

(25)
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where
.

[) ]5 C2+WB2=3 ;

15

()3+3:(2-P),6=:

B8 . 5%’%7+’:(3-’)
The value 0$ A can

and c/s by setting

now be found for known values of (EI)e/SI), IL,

the determinenb of equation (25) equal to zero.
For the psrabolic approximation, the corresponding dete~nant csm be
found by deleting the last row ad column of the matrix in eqpation (25).

Computed results as obtained from this approximate anslysis as well
as those obtained from the more exact analysis are presented and dis-
cussed in the following section.
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REJILTS AND DISCUSSION

●

.

The results of the exact divergence-speed calculations for a low-
aspect-ratio wing for which Poisson’s ratio equals 1/3 are shown in
figure 2. The terms “exact” and “approximate”are used to denote exact
and approximate solutions to the approximate formulation of the static
aeroelastic problem presented herein. In this figure (fig. 2) the
results are given in the form of a plot of the divergence-speed param-
eter A against c/s ‘for vsrious values of the beam-to-plate stiffness
ratio (EI)e/SD. Results me shown only for values of c/s greater

than unity because of the obvious limitations of the slender-body theory
for smaller values. As is to be expected the effect of adding chordwise
stiffness to the wing is to increase the divergence speed. m values
Of A for (EI)e/SD s w (correspondingto a wing in which the chord-

wise bending is neglected) increase without limit as c/s bec~,s large
(or aspect ratio becomes small). On the other hand, the values of A
for afi.nite (EI)e/sD apparently reach a constant value. The curves

actually undulate slightly; however, the deviation from a straight line
is so small that it is not apparent in the figure.

The accuracy of the linear, psrabolic, snd cubic approximations
for the chordwise deflection shape is illustrated in figure 3. In this
figure the variation of 1 with c/s for the approximate solutions is
compared with that for the “exact” solution for the case of zero chord-
wise stiffening. It can be seen that the linear approximation is unsat-
isfactory for all values of c/s greater than unity. The parabolic
approximation gives values of A accurate to within 10 percent of the
exact vslue for c/s less than 2.2. The range of this accuracy is
extended for the cubic approximation to c/s equal to 4.

An examination of the mode shapes at divergence is of interest.
The mode shapes for (EI)e/sD = O sre shown in figure 4 for three

values of c/s. These values of c/s correspond to the positions indi-
cated by the ticks on the curve for (Ej~ /sD = O in figure 2. It CS1’1

be seen that the effect of increasing is essentially to extend
the mode shape rearward; the shape near the leading edge changes only
slightly.

Also shown in figure 4 is the mode shape for c/s = a. This shape
can be obtained in the following msmner:

For all.the solutions obtained for finite c/s, the parameters are
such that the value of B (eq. (20)) is imaginary; therefore, two of
the homogeneous solutions of the differential equation (14) approach 4

zero and two approach infinity as ~ approaches infinity. If the latter

.
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two solutions axe omitted, an eqyation governing divergence is obtained
through the use of the boundary conditions at the leading edge only.

●

This eqxation is

A =a1+A3 (26)

which gives an asymptotic value that agrees within plottable accuracy
with the flat portions of the curves in figwre 2. The corresponding
mode shape is

‘B~sin(a& + e)
f(~) =e

sin e

where

e = tan-l
a

a2
—-a? i-B2
R

(27)

*
Note that equations (26) and (27) hold for finite values of (EI)e/SD

as well as for (EI)elsD = o. The variation of A for large C/S with
.

(EI)e/sD is shown in figure 5. The increase in divergence speed resulting

from chordwise stiffeners is clearly evident.

CONCLUDING REMARKS

The present analysis of the static aeroelastic divergence of low-
aspect-ratio rectangular wings indicates that the deflection shape in
the chordwise direction has an increasing number of waves as the aswct
ratio is reduced. The inclusion of additional chordwise stiffening
reduces the smount of chordwise bending and, consequent~~ increases the
divergence speed. Approximating the chordwise deflection shape by para-
bolic and cubic curves yields divergence speeds in fair agreement with
the predictions of the more exact theory if the aspect ratio is not too

..
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low. The cubic approximation is more accurate than the parabolic one
primarily in that configurations of lower aspect ratio can be treated
without the error becoming excessive.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., January 24, 1957.
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